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Abstract—Motor resonance has, in principle, considerable potential as
a measure for assessing the quality of an ongoing interaction. However,
the ways in which it is currently measured is impractical for applied
scenarios, and none of the established measures can be calculated in or
close to real time. We describe ongoing efforts to assess whether MR can
be obtained in ecologically more plausible scenarios and discuss issues in
need of clarification and the required methodological steps for moving
towards real-time detection and measurement.

I. INTRODUCTION & BACKGROUND

Since the discovery of mirror neurons [1], experimental evidence
indicates that human actors trigger human observers’ motor control
systems, which is referred to as motor resonance (MR). Studies in
human-robot interaction (HRI) provided evidence that robots with
joint structures similar to that of humans can trigger the same
systems as long as the robots’ movements follow velocity profiles
that are biologically plausible [2], [3]. It has subsequently been
hypothesised that MR has an important function in human interaction,
yet the precise role it is ought to play is typically not spelled out.
Chaminade et al. proposed that MR could be used as indicator for
the “quality of interaction” [2] and was indicating “the extent to
which an artificial agent is considered as a social inter-actor” [4].
If true, MR has considerable potential within HRI, for example as
application-independent measure for detecting, and maybe predicting
interactional breakdowns. In order to verify these claims and clarify
the role of MR in human-human and human-robot interaction, we
need to find ways to detect and quantify MR non-intrusively in or
close to real time.

In HRI contexts, MR is typically quantified via one of three second-
order measures that are deemed to be consequences of its presence:
differences in spatial variation of movements (motor interference
(MI)), priming-related differences in reaction time, and differences
in the adaptation of movement speed (motor contagion (MC)). The
relevant differences are group-based effect size estimates between
conditions in which the model moves congruently and those in which
it moves incongruently with respect to the observer’s movements.

While the majority of HRI-based MR research in the past targeted
the identification of essential or contributive factors for triggering
the effect [2], [3], [5]–[8], we have started more recently to change
the standard paradigm for MI towards ecologically more plausible
conditions, with the long-term goal of measuring the effect in close to
real time [9]. In this study, the intransitive (or object-less) vertical and
horizontal waving motions of the standard paradigm were replaced
with forth-back or left-right transitive pick-and-place actions on a
table surface. The employed model was an iCub humanoid robot
[10] which fulfils all of the aforementioned criteria for triggering
MR. We found evidence for MR having occurred in participants’
left-right movements and weaker evidence for the effect of top-down
priming. However, stronger evidence was found for the occurrence
of an unexpected inverse motor interference effect in participants’
forth-back movements: interference appeared to be stronger in the
congruent as compared to the incongruent movement condition. The
ongoing study sketched in the present abstract builds up on this work
in order to clarify open questions.

II. METHODOLOGY

The ongoing study is based on the one described in [9] and still
uses a 2x2x2x2 mixed design but with the following differences:

The factor interaction mode was exchanged against movement speed,
while the factors congruency, movement direction, and prime were
maintained. The change is motivated by the aim to measure two
outcome measures simultaneously. In addition to motor interference,
we attempt to measure participants’ speed adaptions (MC). The robot
executes its movements either slowly or fast, and we added baseline
measurements of participants’ arm movements (cf. [11]).

A second change is the addition of facial expressions and active
gazing behaviour to the robot’s repertoire for positively primed group.
In the previous experiment, participants had either been told that the
robot was watching them, or they had not been told anything in
this regard (positive social prime vs. no prime). The robot, however,
displayed the same behaviour in both conditions. Based on the
obtained results we believe that the prime has been too weak, and
we therefore decided to introduce robot watching behaviour for the
positively primed group, and explicitly tell the negative primed that
the robot was ignoring them (positive vs. negative prime).

A third change is the modification of the spatial layout during forth-
back movements. We hypothesised that what we termed “inverse
motor interference” effect earlier, may have actually been a spatial
compatibility effect occluding or overpowering a potentially occur-
ring motor interference (cf. [9], [12]). In order to reduce the efficacy
of potential spatial compatibility effects we reposition participants
during conditions involving forth-back movements: Participants and
robot, while still sitting at opposite ends of the table, are positioned
such that their right arms, rather then their heads, are aligned
along the forth-back axis and when participants perform forth-back
movements. We hope to have thereby neutralised any potentially
occurring spatial compatibility effects by design.

III. DISCUSSION & OUTLOOK

If Chaminade’s et al. assertion is correct and motor resonance does
indeed track the quality of an ongoing interaction, the measure’s
potential value for HRI can hardly be overstated. At this moment,
however, empirical support is yet to be provided. Independent of this
claim, there are several other issues linked to MR. Theoretically the
relationship between MR and related measure such as entrainment
needs clarification (but cf. [13]). Methodologically, we have shown
in [9] that the established ways of quantifying MI are not equivalent.
Standardisation or, at least, agreement with respect to data processing
choices for MI in particular is therefore needed. Furthermore the
measured effect sizes of MI were small such that a further relaxation
of experimental constraints may lead to a loss of detectability. A
further methodological issue arises if we assume motor resonance
to fluctuate within the course of an ongoing interaction. While MR
is currently measured on the group-level, individual interactions will
involve only few or even single persons. In order to detect motor
resonance here “on the fly” statistical methods operating on individual
time series such as change point predictions [14] will be needed.

We hope to be able to report initial results during the workshop. In
the longer run we are planning to apply the above-mentioned methods
for time series analysis to our existing motion recordings in order to
explore the variability of the different second-order measures between
individuals as well as to assess their volatility as the measurements
unfold in time.
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